
*_ Star Underscore Presents

Graph Theory

Graph Theory is the mathematical study of relationships between objects, represented as nodes (vertices)
and edges. This field is foundational for understanding networks, connectivity, and data structures critical

to modern computing. From social networks to transportation systems, graph theory provides the tools to
analyze and solve real-world problems efficiently.

This packet will guide you through fundamental concepts, advanced techniques, and their applications in
various domains like search engines, optimization, and machine learning. Whether you're a beginner or

looking to deepen your understanding, this packet is your gateway to mastering graph theory.

Table of Contents

Terminology

Algorithms
Data Structures

Final Notes

Revision History

Version Date Author Changes

1.0 Jan 14, 2025 Star Underscore Initial release

Graph Theory Appendix 1 | Page 1

Star Underscore - starunderscore.com

Terminology

Fundamental Concepts

Graph: A collection of nodes (vertices) and edges connecting them, used to represent relationships

and structures.

Directed Graph (Digraph): A graph where edges have a direction, often used in web page link
analysis.

Undirected Graph: A graph where edges have no direction, representing bidirectional
relationships.

Key Properties

Node (Vertex): A fundamental unit of a graph, representing entities such as web pages or data

points.
Edge: A connection between two nodes, which can be directed or undirected.

Degree:

In-Degree: Number of edges coming into a node.

Out-Degree: Number of edges leaving a node.

Weighted Graph: A graph where edges have weights representing costs, distances, or
probabilities.

Graph Algorithms

Graph Traversal:

Depth-First Search (DFS): Explores as far as possible along a branch before backtracking.

Breadth-First Search (BFS): Explores all nodes at the current level before moving deeper.

Shortest Path:

Dijkstra's Algorithm: Finds the shortest path in a weighted graph.

A Algorithm*: Optimized pathfinding using heuristics.

Minimum Spanning Tree (MST):

Prim's Algorithm: Builds an MST by starting from a node and adding the smallest edge.
Kruskal's Algorithm: Builds an MST by sorting edges and adding them incrementally.

Graph Theory Appendix 1 | Page 2

Star Underscore - starunderscore.com

Advanced Concepts

Adjacency Matrix: A square matrix used to represent a graph, where each element indicates the

presence or absence of an edge.
Adjacency List: A list representation of a graph, where each node has a list of its adjacent nodes.

Connectivity:

Connected Graph: A graph where there is a path between every pair of nodes.

Strongly Connected Components (SCCs): Subsets of a directed graph where every node is

reachable from every other node within the subset.

Applications in Search Engines

PageRank: A graph-based algorithm that ranks web pages by analyzing the link structure of the

web.
HITS Algorithm: Identifies hubs (pages pointing to many authorities) and authorities (pages

pointed to by many hubs).

Graph Traversal for Indexing: Techniques like BFS and DFS are used to crawl and index web
pages.

Weighted Graphs for Ranking: Models relationships between pages and computes relevance
scores based on link weights.

Visualization

Graph Plotting: Visualizing nodes and edges to understand relationships and structures.

Force-Directed Layouts: A technique for graph visualization where edges act as springs and
nodes repel each other.

Graph Theory Appendix 1 | Page 3

Star Underscore - starunderscore.com

Algorithms

Traversal Algorithms

1. Depth-First Search (DFS): Explores as far as possible along each branch before backtracking.

Used in pathfinding, cycle detection, and topological sorting.

2. Breadth-First Search (BFS): Explores neighbors level by level. Ideal for finding the shortest path
in unweighted graphs and testing connectivity.

3. Random Walk: Traverses graph edges randomly. Used in simulations, network analysis, and
probabilistic algorithms.

Shortest Path Algorithms

1. Dijkstra's Algorithm: Finds the shortest path from a source to all other nodes in a weighted

graph. Common in GPS navigation and network routing.
2. Bellman-Ford Algorithm: Computes shortest paths while handling negative weights. Useful in

financial modeling and network flows.
3. Floyd-Warshall Algorithm: Finds shortest paths between all pairs of nodes. Applied in dense

graphs and all-pairs analysis.

4. A*: A heuristic-based algorithm for shortest path finding, commonly used in AI for game
development and robotics.

Graph Coloring Algorithms

1. Greedy Coloring: Assigns colors to graph vertices, ensuring no two adjacent vertices share the
same color. Used in scheduling and register allocation.

2. Backtracking Coloring: Exhaustively searches for valid colorings. Suitable for constraint
satisfaction problems.

3. Welsh-Powell Algorithm: Orders vertices by degree and colors them greedily. Effective for sparse

graphs.

Graph Theory Appendix 1 | Page 4

Star Underscore - starunderscore.com

Network Flow Algorithms

1. Ford-Fulkerson Method: Computes the maximum flow in a flow network. Used in transportation

and network capacity planning.
2. Edmonds-Karp Algorithm: An implementation of Ford-Fulkerson using BFS to find augmenting

paths. Ensures polynomial runtime.
3. Dinic’s Algorithm: Improves max-flow computation using level graphs. Efficient for large

networks.

4. Push-Relabel Algorithm: Uses preflows to find maximum flows. Useful in bipartite matching.

Minimum Spanning Tree (MST) Algorithms

1. Prim's Algorithm: Builds an MST by adding the shortest edge connected to the growing tree.

Used in network design and clustering.
2. Kruskal's Algorithm: Adds edges in increasing order of weight while avoiding cycles. Effective

for edge-sparse graphs.

3. Borůvka's Algorithm: Finds MST by repeatedly adding cheapest edges. Applied in parallel
computing.

Matching Algorithms

1. Hungarian Algorithm: Solves the assignment problem for weighted bipartite graphs. Used in
resource allocation and scheduling.

2. Hopcroft-Karp Algorithm: Finds maximum matching in bipartite graphs. Applied in job

assignments and network flows.

Planarity Testing

1. Kuratowski’s Theorem: Determines if a graph is planar. Foundational in topology and graph

drawing.
2. Hopcroft-Tarjan Algorithm: Tests graph planarity in linear time. Used in visualization and VLSI

design.

Graph Theory Appendix 1 | Page 5

Star Underscore - starunderscore.com

Cycle Detection

1. Tarjan’s Algorithm: Finds all strongly connected components in a directed graph. Useful in

dependency analysis.
2. Union-Find Cycle Detection: Detects cycles in undirected graphs efficiently. Common in graph

connectivity problems.

Other Specialized Algorithms

1. PageRank Algorithm: Ranks vertices based on link structure. Core to web search engines.

2. Havel-Hakimi Algorithm: Tests if a degree sequence is graphical. Foundational in graph theory

studies.
3. Bron-Kerbosch Algorithm: Finds all maximal cliques in an undirected graph. Used in social

network analysis.

Graph Theory Appendix 1 | Page 6

Star Underscore - starunderscore.com

Data Structures

Data
Structure Description Applications Strengths

Adjacency
Matrix

A 2D array where each
cell represents the
presence (or absence) of
an edge between nodes.

Used in dense graphs for
quick edge lookups.

Simple to implement;
constant-time edge
checking.

Adjacency
List

A list where each node
stores a list of its
neighbors.

Ideal for sparse graphs;
graph traversal
algorithms like
BFS/DFS.

Memory efficient for
sparse graphs; dynamic
edge handling.

Edge List A list of all edges in the
graph, often paired with
weights.

Useful in graph
algorithms like Kruskal’s
MST.

Compact representation;
ideal for edge-centric
algorithms.

Binary
Heap

A binary tree that satisfies
the heap property (min-
heap or max-heap).

Dijkstra’s and Prim’s
algorithms for priority
queues.

Simple and efficient for
most use cases.

Fibonacci
Heap

A collection of trees with a
relaxed structure, allowing
faster decrease-key
operations.

Efficient for Dijkstra’s
and Prim’s algorithms in
dense graphs.

Theoretical efficiency for
decrease-key operations,
though complex to
implement.

Pairing
Heap

A multi-way tree with
comparable performance
to Fibonacci heaps but
easier to implement.

Prim’s algorithm and
shortest path algorithms
with frequent merges.

Practical and efficient for
decrease-key-heavy
operations.

d-ary Heap A generalization of binary
heaps with (d) children
per node.

Dijkstra’s algorithm with
tunable (d) for dense
graphs.

Reduces tree height,
leading to fewer
comparisons.

Binomial
Heap

A collection of binomial
trees supporting efficient
merging.

Minimum spanning tree
algorithms and graph
clustering.

Efficient merge operations
for dynamic graph
problems.

Skew Heap A self-adjusting binary
heap optimized for
merging.

Prim’s algorithm for
frequent priority queue
merging.

Simpler implementation
with good practical
performance.

Leftist
Heap

A binary tree optimized to
ensure the shortest path to
a leaf is always on the
right.

Dynamic MST
algorithms with frequent
merges.

Highly efficient for
merge-heavy graph
algorithms.

Graph Theory Appendix 1 | Page 7

Star Underscore - starunderscore.com

Data
Structure Description Applications Strengths

Weak Heap A relaxed version of
binary heaps with a
weaker heap property.

Sorting edges in
Kruskal’s algorithm.

Optimal sorting for edge-
weight operations.

Union-Find A data structure to track
and merge disjoint sets
efficiently.

Cycle detection,
Kruskal’s MST
algorithm.

Near constant-time union
and find operations.

Bloom
Filter

A probabilistic data
structure for testing set
membership.

Edge existence checks in
very large graphs.

Compact memory usage;
false positives but no false
negatives.

Trie A tree structure used to
store dynamic sets of
strings.

Pathfinding with prefix
matching; auto-
completion in routing.

Fast prefix queries;
efficient for string-heavy
graphs.

Queue A linear structure
following FIFO order.

BFS traversal, graph
coloring.

Simple; guarantees level-
order traversal.

Stack A linear structure
following LIFO order.

DFS traversal,
topological sorting.

Simple; intuitive for
backtracking algorithms.

Deque A linear structure where
elements can be added or
removed from both ends.

Sliding window
algorithms, BFS with
level tracking.

Provides flexibility for
two-sided operations.

Hash Table Key-value pairs enabling
constant-time lookups and
insertions.

Fast adjacency list
implementations, edge
existence checks.

Highly efficient for sparse
graphs.

Interval
Tree

A tree structure to hold
intervals and efficiently
find all overlapping
intervals.

Scheduling algorithms,
detecting overlapping
edges in planar graphs.

Handles dynamic interval
queries efficiently.

Priority
Queue

Abstract data type where
elements are processed
based on priority.

Scheduling tasks in graph
traversal, Dijkstra’s
algorithm.

Guarantees element
processing in priority
order.

Real-World Examples of Data Structures in Graph Theory

Understanding how these data structures are applied in real-world scenarios provides clarity and

inspiration for practical use. Below are examples showcasing their roles in everyday technologies and
systems:

Graph Theory Appendix 1 | Page 8

Star Underscore - starunderscore.com

1. Adjacency Matrix:

Example: Used in social media platforms to analyze dense friend networks for mutual
connections.

2. Adjacency List:

Example: Applied in Google Maps for efficient routing and real-time updates.

3. Edge List:

Example: Employed in graph-based machine learning algorithms for recommendation
systems.

4. Binary Heap:

Example: Critical in GPS systems for finding shortest paths efficiently.

5. Fibonacci Heap:

Example: Utilized in advanced transportation networks for dense city mapping.

6. Union-Find:

Example: Powers clustering algorithms in social networks like LinkedIn to detect
professional groupings.

7. Trie:

Example: Supports auto-complete in search engines and routing suggestions.

8. Bloom Filter:

Example: Used in distributed databases like Cassandra for quick key existence checks.

9. Deque:

Example: Integral to sliding window algorithms in real-time data streaming platforms.

10. Priority Queue:

Example: Ensures task prioritization in operating systems and Dijkstra’s algorithm.

Final Notes

Graph Theory is more than an academic subject—it's a cornerstone of computer science, enabling us to

map complex systems, solve intricate problems, and optimize processes. As you continue your journey,
explore the practical implementations of graph algorithms in areas like data science, logistics, and

artificial intelligence.

Graph Theory Appendix 1 | Page 9

Star Underscore - starunderscore.com

Let the principles of graph theory illuminate your problem-solving strategies and inspire your next

breakthrough.

Enjoying this document? Unlock the Hacker Reading version for advanced focus and comprehension at starunderscore.com/pro

Graph Theory Appendix 1 | Page 10

Star Underscore - starunderscore.com

https://starunderscore.com/pro

